If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+63y=0
a = 9; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·9·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*9}=\frac{-126}{18} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*9}=\frac{0}{18} =0 $
| -1x^2+12=-1x | | (M+4)m-5)=-5 | | -4+19q=19q-4 | | 18x-4-12x=2(3x-3)+2 | | Y=5-x/3.1416 | | -15w+5=19-9-16w | | (12/7x)+(3/2x)=15/14 | | -2.8x=-28 | | 14-2x+1=-5x-3+x | | -26=9x-8 | | 3x²=75 | | -14c+5=-14c-18 | | (M+4)m-5)=-8 | | -12+n=40 | | x²-4=60 | | 6y-20=20+17+3y | | (5h-7)(h^2-5h-36)=0 | | 9+r=r+1 | | a/6+4=12 | | c-7=-7+c | | -22=8-3x | | -1+3x+7=12+5x+6 | | x*x-4=60 | | 21y-21=0 | | 10-2y=-2y+10 | | 3x^2+12x=-7 | | (5d+7)(d^2-2d-15)=0 | | 7+9g=-3+7g | | 7+2/3x=20 | | -8+6u=5u | | 7y+7=9y-5 | | 3a+a^2=54 |